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Abstract. Topologically stable cellular partitions ofD-dimensional spaces are studied. A
complete statistical description of the average structural properties of such partitions is given
in terms of a sequence ofD2 − 1 (or D−1

2 ) variables forD even (or odd). These variables
are the average coordination numbers of the 2k-dimensional polytopes (2k < D) which make
up the cellular structure. A procedure to produceD-dimensional space partitions through cell-
division and cell-coalescence transformations is presented. Classes of structures which are
invariant under these transformations are found and the average properties of such structures are
illustrated. Homogeneous partitions are constructed and compared with the known structures
obtained by Voronöı partitions and sphere packings in high dimensions.

1. Introduction

We study the topologically stable division of any dimensional space by cells. Such
systems have minimal incidence numbers. Configurations with higher incidence numbers
are topologically unstable because they can be split into configurations with the minimal
incidence numbers by infinitesimal local transformations. In the literature these cellular
partitions are known as ‘froths’ since in two and three dimensions (2D and 3D) a soap froth
is the archetype of such structures. A 2D froth is a space-filling cellular partition made
of irregular polygons where three polygons are incident on each vertex. A 3D froth is a
polyhedral partition of space where on each vertex are incident four polyhedra. In general,
a D-dimensional froth is a partition of space in irregular polytopes, where on each vertex
D + 1 polytopes are incident. Cellular structures with minimal incidence numbers always
appear when the space is filled by cells without following any special symmetry. Therefore,
froths are the typical structures of any disordered partition of space into cells.

A broad class of disordered natural and artificial cellular systems have the topological
structure of froths [1–3]. Examples in 2D are magnetic domains in garnet films, Bérnard–
Marangoni cells in thermal convections, biological tissues, cuts of polycrystalline metals
and ceramics, emulsions, the subdivision of territory into administrative regions or states,
geological structures and 2D soap froth (which is obtained by squeezing a soap foam
between two plates) [4–6]. In 3D, examples are: biological cells, polycrystalline metals
and ceramics, and foams [4, 7, 8]. Moreover, the structure of any packing (of hard spheres
or atoms, for example) is the dual of a cellular system (which can be generated, for instance,
by using the Voronöı construction [9] around the centres of the packed elements). In general,
cellular systems generated by packing elements without the use of any specific symmetry
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have structures which are topologically froths. It follows that, among the examples of 3D
froths one can include amorphous metals, glasses and some crystalline structures such as
the tetrahedrally close-packed phases [10, 11].

Froths in spaces of dimensionality higher than three are relevant in information theory
and signal processing [12, 13]. Indeed, an information can be associated with a point in an
N -dimensional space. To transmit and recover the information in the presence of noise one
must put the points in theN -dimensional space, separated by a certain distance which must
be larger than the additional noise. Therefore to each point (information) is associated a
finite volume and the entire space is subdivided into cells, each one containing one encoded
information [12]. The energy necessary to transmit an information is proportional to the
distance of the representing point with respect to the origin. An efficient coding, which
minimizes the energy, organizes the volumes associated with the different information in
the closest possible packing of similar cells around the origin [13].

Dense packings of equal cells in high dimensions have also applications in the study
of analogue–digital converters. In this case, the space of the continuous analogue variables
is quantized in a system of cells and the volume inside each cell is associated with one
digital information. The quantization error is associated with the extension of the interface
between the cells and with the distance between the centre of a cell and its vertices [13].

High-dimensional partition of space has also application in neural networks and complex
system dynamics [14–18]. Some relevant properties (such as storage capacity in neural
networks and the slow-ageing dynamics of glasses) are associated with the subdivision of
the phase-space in the basin of attraction around the stored information or the minima of
the energy.

2D and 4D froths (and their duals: triangulations and simplicial decompositions) have
relevance in quantum gravity [19–24]. Here the continuous space is divided into cells
and the functional integration over all equivalence classes of metrics is replaced with a
summation over all the triangulations of the given manifold.

Despite the broad variety of systems which are topologically froths and the large number
of studies devoted to them in the literature, very little is known about the structure of
froths in dimensions larger thanD = 3. Froths are disordered cellular structures where
the cells are highly correlated. These correlations essentially come from the space-filling
condition which locally constrains the cells to pack without leaving any empty space, and
globally constrains the froth to tile a manifold with a given curvature. In this paper we
study how these local and global conditions determinate the average topological properties
of the froth structure and we construct froths in any dimension by cell-division and cell-
coalescence transformations. The aim of this paper is to investigate the average structural
properties of classes of homogeneous partitions of high-dimensional Euclidean spaces and
to give analytical instruments and methodologies for the the investigation of the topological
structure of froths in spaces of arbitrary dimensions and curvature.

The plan of the paper is as follows. In section 2, the hierarchical organization of
topologically stable divisions of space in cells is studied. In section 3, we discuss a
way to generate or modifyD-dimensional froths by cell-division and cell-coalescence
transformations. In section 4, the fixed points of such transformations are studied and
the properties of the associated structures are illustrated. The construction of homogeneous
partitions and the comparison of their properties with known structures, is considered in
section 5.
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2. Hierarchy in the cellular structure

A froth in an arbitrary dimensionD is a cellular structure where the incidence numbers (i.e.
the average number of elements which are incident on a given lower-dimensional element)
are fixed by the stability condition at the minimal value. The cells of a froth in dimension
D areD-dimensional irregular polytopes packed together to fill space. The boundaries of
these cells are made with(D − 1)-dimensional polytopes which are bounded by(D − 2)-
dimensional polytopes and so on up to the 0D elements which are the vertices. For example,
a 3D froth is made with 3D polyhedra (the cells) which are bounded by 2D polygons (the
faces) which are bounded by 1D elements (the edges) finally bounded by 0D elements (the
vertices). A characterization of thisD-dimensional structure can be given in terms of the
numbers ofD-dimensional polytopes which are making the froth, in terms of the average
numbers of(D − 1)-dimensional polytopes making the boundary of a given cell and so on
counting the number of polytopes making the boundary of the boundary, etc.

The boundary of anyk-dimensional polytope of the froth is also a froth in a(k − 1)-
dimensional elliptic space. TheD-dimensional froth is therefore a graded topological set:
it containsD-polytopes, the cells, which are tiling a space which can be Euclidean, elliptic
or hyperbolic. The boundary of each cell is an ellipticD − 1 surface which is tiled by
a (D − 1)-dimensional froth, whose cells are(D − 1)-polytopes which are the interfaces
bounding the original cell and separating it from its topological neighbours. Each interface
of the (D− 1)-froth is an elliptic(D− 2)-froth of (D− 2)-polytopes, which are separating
the cells from their neighbours. The graded topological set terminates with edges (segments
or convex 1-polytopes), bounded by two vertices (or 0-polytopes).

Let us denote withCk the number ofk-dimensional cells in the froth (C0 number of
vertices,C1 number of edges,C2 number of faces,C3 number of polyhedra. . . CD number
of D-dimensional cells). Let us denote with〈ni,j 〉 (for i 6 j ) the average number ofi-
dimensional cells which are surrounding and making the boundary of aj -dimensional cell
(〈n0,1〉 = 2 number of vertices surrounding an edge,〈n1,2〉 number of edges per faces, etc).

The average froth structure is characterized by the numbers of polytopesCi and by the
valences〈ni,j 〉 (with 0 6 i < j 6 D), which are therefore the variables of the problem.
The total number of these variables is1

2(D + 1)(D + 2), but they are related by the Euler
equations and constrained by the stability condition. In particular, the numbers of elements
in the frothCi are related through the Euler relation:

D∑
i=0

(−1)iCi = χD (1)

whereχD is the Euler–Poincaré characteristic associated with space curvature. ForD even,
opposite signs ofχD correspond to spaces with opposite curvature:χD > 0 corresponds
to an ellipticD-dimensional space andχD < 0 corresponds to a hyperbolic space. On the
other hand, forD odd, this relation between the sign ofχD and the space curvature no
longer holds.

A Euler relation is also satisfied for each froth of the graded topological set. That gives
a set of relations for the quantities〈ni,j 〉

J−1∑
i=0

(−1)i〈ni,J 〉 = 1− (−1)J with J = 1, 2, . . . , D. (2)

Here the factor 1− (−1)J = χ(elliptic)
J−1 is the Euler–Poincaré characteristic for the surface of

a J -dimensional sphere (which is a(J − 1)-dimensional elliptic space).
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The numbersCi and the averages〈ni,j 〉 are related by the stability condition(
D + 1− i
j − i

)
Ci = 〈ni,j 〉Cj with i 6 j 6 D (3)

whereni,i = 1. The binomial coefficient in the left-hand side of equation (3) is an incidence
number (number ofj -dimensional polytopes incident on ani-dimensional polytope) which
is fixed at the minimum value by the stability condition (there are(D+1) edges and(D+1

2 )

faces incident on each vertex,D faces incident on each edge, etc).
By contrast, the coordination numbers〈ni,j 〉 with i < j are variables (except forn0,1:

every edge is bounded by two vertices and thereforen0,1 = 2). These variables are not
all independent and their range of variability is severely restricted by relations (1)–(3) (for
example, in a 2D-infinite Euclidean froth we have〈n1,2〉 = 〈n0,2〉 = 6 in consequence of
the Euler relation).

One can show that [25] a complete topological characterization of the average structure
of a D-froth is given by a set ofD2 − 1 (or D−1

2 ) for D even (or odd), independent
variables: the even ‘valences’X2l = 〈n2l−1,2l〉 with 2l < D. These valences are theaverage
coordination numbers(average number of neighbours) of the 2l-dimensional polytopes in
the froth. These arefree variables. In contrast, the coordination numbers for the odd-
dimensional polytopes (the odd valences) are given in terms of the even valences by the
relations

X1X2 . . . XJ

(J )!
− X2 . . . XJ

(J − 1)!
+ · · · − (−1)J

XJ−1XJ

2
+ (−1)JXJ = 1− (−1)J

for J = 1, 2, . . . D. (4)

(This is obtained from equation (2) associated with equation (3) and by using the definition
Xk = 〈nk−1,k〉.) For J = 2l + 1 odd, the left-hand term in equation (4) is equal to 2 and
equation (4) fixes the value of the odd valencesX2l+1 in terms of the even ones. When
J = 2l even, the left-hand term is zero and therefore the even valencesX2l are free variables.

In k dimensions the polytope with minimal coordination number is a simplex withk+1
neighbours. Therefore, the valences must stay in the rangek + 16 Xk <∞. The average
structure of aD-dimensional froth is characterized by a sequence of even free valences
{X2, X4, X6 . . .}. For any given sequence of even valences{X2l}, the odd ones can be
calculated by using equation (4). But only sequences which generate odd valences with
X2l+1 > 2l + 2 are admissible. This condition strongly constrains the accessible values of
the even valences.

The Euler relation (1), associated with equations (4) and (3), gives an additional relation
between valences(

X1X2 . . . XD

(D + 1)!
− X2 . . . XD

(D)!
+ · · · − (−1)D

XD

2
+ (−1)D

)
CD = χD. (5)

In even-dimensional spaces, the sign of the Euler–Poincaré characteristicχD is
associated with the space curvature. The sign of the term inside the brackets in the left-hand
side of equation (5) is the same as that ofχD (becauseCD > 0). Therefore, any two regions
of the valences’ space which have different signs to the bracket term (i.e. toχD) correspond
to two froths on manifolds of opposite Gaussian curvature. For example, in the 2D case,
where the average structure of the froths is described byX2, equation (5) gives

(6−X2)
C2

2
= χ2 (6)
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Figure 1. Different regions in the parameter space{X2l} correspond to froths which are tiling
spaces of different curvatures. (a) 2D froths withX2 < 6 tile elliptic surfaces, froths with
X2 > 6 tile hyperbolic surfaces, andX2 = 6 corresponds to froths tiling the Euclidean plane.
(b) The hyperbolic, Euclidean and elliptic tilings correspond to three regions of the{X2, X4}
parameter space. Cell-division transformations modify the properties of curved tilings towards
the Euclidean ones (arrows).

which indicates that 2D froths withX2 < 6 are tiling elliptic surfaces, whereas froths with
X2 > 6 are tiling hyperbolic surfaces (see figure 1(a)). In 4D equation (5) gives

X4 =
(

1− χ4

C4

)
5

6−X2

5−X2
(7)

(where we used equation (4) to expressX3 as a function ofX2). Equation (7) indicates that
the region in the parameter space{X2, X4} below the lineX4 = 56−X2

5−X2
is associated with

4D froths which are tiling elliptic manifolds (χ4 > 0), whereas the region above this line
correspond to froths tiling hyperbolic manifolds (χ4 < 0) (see figure 1(b)).

Note that equation (4) is a constraint on the sequence{X2l} due to local conditions (it
concerns the average properties of a (2l+1)-dimensional polytope in terms of the properties
of the lower-dimensional elements that are making it), and equation (5) is a constraint on
{X2l} due to the global curvature of the manifold that the froth is tiling.

Note also that relation (7) has a singularity inX2 = 5. This is associated with the
existence of polytope{5, 3, . . .} (Schl̈alfly symbols [26]) up toD = 4 only, as explained in
appendix A.
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Figure 2. Given two different partitions of theD-dimensional space inD-simplexes one can be
transformed into the other by a finite sequence of two local transformations called ‘Alexander
moves’ ((a) and (b) for the 2D case). In the dual froths these transformations correspond to
two special cell-division transformations ((c) and (d) for the 2D case).

3. Cell-division and cell-coalescence transformations

In this section we buildD-dimensional froths by using cell-division transformation and its
inverse (cell-coalescence). This is a local transformation that changes the structure of the
froth but leaves unchanged the global topological properties (the curvature of the manifold
tiled by the froth or, equivalently, the parameterχD). By using cell division and coalescence
it is therefore possible to generate different froths which are tiling topologically identical
manifolds.

In the literature analogous transformations have been studied for the dual problem of
triangulations and simplicial decomposition. In particular, it is known that, given two
different partitions of theD-dimensional space inD-simplexes (where a zero-simplex is a
point, one-simplex an edge, two-simplex a triangle, three-simplex a tetrahedron, etc), one
can be transformed into the other by a finite sequence of two local transformations called
‘Alexander moves’ [27]. The first move is the addition of a vertex inside a simplex dividing
it into D + 1 simplexes with the same boundary as the original simplex. The second move
consists of adding a vertex on an edge of a simplex and connecting it with the vertices
of the incident simplexes. For the 2D case the two Alexander moves are the insertion
of a new vertex inside a triangle and the insertion of a new vertex on an existing edge.
They are shown in figures 2(a) and (b). In the dual froth these moves correspond to a
cell division which inserts a triangle near to an existing vertex and to a cell-division which
inserts a square near to an existing edge (figures 2(c) and (d)). In 3D one can easily see,
by following the same procedure illustrated for 2D, that the two Alexander moves can be
obtained in the dual space of the froth by applying cell-division transformations. In the
general case, one can see that the first Alexander move can always be done in the dual
froth by dividing a cell in the proximity of a vertex, inserting in this way a new polytope
with D+1 neighbours (a simplex). The second move can be done by dividing a cell in the
proximity of an existing (D − 1)-dimensional interface between two cells. In this case, the
kind of polytope inserted depends on the local configuration.

We have therefore shown that the two Alexander moves are reduced in froths to
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two special kinds of cell-division transformations. Consequently,the entire set of all the
possible froths tiling a given manifold can be generated by cell-division and its inverse (cell-
coalescence) transformations.

Now we investigate how the average properties of the structure are modified by these
transformations. First consider the cell-division transformation in the 2D case. The cut
of a cell corresponds to insert into the system one additional face, three edges and two
vertices. Therefore, one has the transformationsC2 → C2 + 1, C1 → C1 + 3 and
C0 → C0 + 2. One can verify that the Euler–Poincaré characteristic rests unchanged
(indeed,χD = C0− C1+ C2). However, the average coordination number (which is given
by X2 = 2C1

C2
, see equation (3)) is modified

X′2 = X2∓ 1

C2± 1
(X2− 6) (8)

with the upper sign corresponding to a cell-division transformation and the lower sign to
its inverse (coalescence).

Now consider the 3D case. Cell division consists of inserting inside a cell a new face
which can have, in general,c1 edges andc0(= c1) vertices. This cut corresponds to the
transformationC3→ C3 + 1, C2→ C2 + 1+ c1, C1→ C1 + c1 + c0 andC0→ C0 + c0.
Equation (3) givesX3 = 2C2

C3
, and therefore we obtain that the average coordination number

transforms as

X′3 = X3∓ 1

C3± 1
(X3− 2(c1+ 1)). (9)

In the D-dimensional case, the cut of a cell corresponds to introducing a (D − 1)-
dimensional interface which is, in general, made ofc0 vertices,c1 edges,c2 faces,c3 3D
cells. . . cD−2 (D−2)-dimensional polytopes. Consequently, the division of aD-dimensional
cell (or the coalescence between two cells) of theD-dimensional froth corresponds to the
transformation

C0→ C0± c0

C1→ C1± c1

C2→ C2± c2± c1

...

Ck → Ck ± ck ± ck−1

...

CD−1→ CD−1± 1± cD−2

CD → CD ± 1

(10)

where the upper sign(+) corresponds to a cell-division transformation and the lower sign
(−) to its inverse (coalescence). By substituting into equation (1) one can verify that the
global curvature (χD) is an invariant quantity under the transformation (10). Note that
expression (10) takes the canonical formCk → Ck ± ck ± ck−1 for all k if one imposes
c−1 = 0, cD−1 = 1 andcD = 0.

From equation (3) one has the identityXkCk = (D + 2− k)Ck−1 (where we used the
definitionXk = 〈nk−1,k〉). By substituting in this expression the transformation (10) we get

X′k = Xk ∓
1

Ck ± ck ± ck−1
(Xk(ck + ck−1)− (D + 2− k)(ck−1+ ck−2)) (11)

(upper sign, cell division; lower sign, cell coalescence).
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We recall that through cell-division/coalescence transformations it is possible to generate
the full class of froths tiling topologically identical manifolds. The modification of
the average structural properties associated with these geometrical transformation are
algebraically given by equation (11). By using this expression it is therefore possible
to find the average topological properties of all the froths on a given manifold.

4. Fixed points

When cell-division or coalescence transformations are performed on a 2D froth with average
coordinationX2 = X∗2 = 6, they leave the local average structural properties unchanged
(i.e.X′2 = X2 = X∗2 = 6, see equation (8)). This is a fixed point in the transformation (10)
and corresponds to 2D Euclidean froths. Moreover, one can see that the average structural
properties of froths which are tiling elliptic surfaces (i.e. whereX2 < 6) are modified toward
the Euclidean structure (X2 < X′2 < 6) by the application of the cell-division transformation.
Analogously, hyperbolic froths (X2 > 6) are also modified towards the Euclidean structure
(6< X′2 < X2) (see figure 1(a)). (Note that the global curvature remains always unchanged.
Indeed,χD is invariant under the transformation (10).)

In the general case, one can immediately see that transformation (11) has the fixed point

X∗k = (D + 2− k)ck−1+ ck−2

ck + ck−1
(12)

which is the structure that is invariant under cell-division/coalescence transformations
({X∗k ′} = {X∗k }).

A froth is a graded set. Therefore the (D − 1)-dimensional interface that is introduced
into the system to cut a cell is a(D − 2)-dimensional elliptic froth withc0 vertices,c1

edges. . . cD−2 (D− 2)-dimensional cells. All the relations written above, and in particular
equations (2) and (3), can be applied to this(D − 2)-dimensional elliptic froth. One has,
ckxk = (D − k)ck−1 and ck−1xk−1 = (D + 1 − k)ck−2, with xk and xk−1 the average
coordination numbers of thek and (k − 1)-dimensional polytopes which are making the
(D − 1)-dimensional interface. By substituting into equation (12), one gets

X∗k =
(D + 2− k)(D + 1− k + xk−1)

(D + 1− k)(D − k + xk) xk. (13)

The fixed point configuration is therefore determined by a set of variables{xk} with k < D

which are the average coordinations of the (D− 1)-dimensional polytope that is inserted or
removed during the cell-division or coalescence transformation. For example, inD = 3,
relation (13) gives

X∗3 = 2x2+ 2 (14)

with x2 the number of edges of the face that is inserted (or removed) to divide a cell (or
effect coalescence between two cells).

The minimum number of edges per cell is three. Therefore from equation (14) it follows
that fixed-point structures are possible only in the region of the parameter space withX3 > 8
(see figure 1(a)). Any structure withX3 < 8 is transformed towards the fixed-point region
(X3 > 8) by applying cell-division transformations.

In 4D equation (13) gives

X∗2 =
20x2

3(2+ x2)

X∗4 = 2(x3+ 1) = 2

(
12

6− x2
+ 1

)
.

(15)
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We can express the parameterx2 in equation (15) in terms ofX∗2 obtainingX∗4 = 56−X∗2
5−X∗2 ,

which is the condition on the even valences that identifies the Euclidean region in 4D froths
(see equation (7)).The fixed-point structures are Euclidean. Sincex3 > 4, it follows that
X∗4 > 10, which implies that structures generated by cell division can only access a part of
the Euclidean region in the phase-space.

We can in general prove that the fixed point{X∗k } given by equation (13), is the average
structure of aD-dimensional froth which is tiling a manifold withχD = 0. Indeed, let us
substitute into equation (5) the fixed-point configuration ({X∗k }) and apply the cell-division
transformation. By definition the sequence{X∗k } does not change, whereas the total number
of cells increases of a unity (Cd → CD + 1). To satisfy equation (5) before and after this
transformation one must haveχD = 0. Which proves the theorem.

By rewriting equation (11) in the form

X′k = Xk ∓
(ck + ck−1)

Ck ± ck ± ck−1
(Xk −X∗k ) (16)

it is easy to see that the fixed points are stable under cell-division transformations (upper sign
in equation (16)) which insert identical polytopes as interface. Indeed, from equation (16),
if Xk > X∗k thenXk > X′k > X∗k and vice versa.

In the space of the configuration{X2, X4, . . . , X2l , . . .}, whenD is even, the Euclidean
region is a surface given by equation (5) (withχD = 0). The fixed-point configurations are
a subset of this surface. Froths outside the fixed-point configuration are always transformed
toward this subset by applying cell-division transformations. WhenD is odd, equation (5)
is not a constraint and the fixed points are associated with a sub-volume of the whole
accessible parameter space.

5. Construction of Euclidean froths

In this paragraph we study froths generated by cell-division transformations. We therefore
study the class of structures{X∗k } given by equations (11) and (13). The full class of these
froths is obtained by varying in equation (13) the parameters{xk} in the allowed range
(i.e. k + 1 6 xk < ∞, which satisfy the conditions (4) fork odd and the relation (5) with
χD < 0). Here, we study only some particular cases.

Let us first note that, from equation (13), the average number of neighbours of the
fixed-point structures is given in terms of the coordination of the inserted interface (xD−1)
by

X∗D = 2xD−1+ 2. (17)

In 2D an edge is inserted or removed from a face. The ‘coordination’ of an edge is
its number of vertices:xD−1 = x1 = 2. ThereforeX∗2 = 6, as it should in Euclidean
space. In 3D a face is inserted in, or removed from a cell. The coordination of this face
(x2) is its number of edges and in principle it can be any number between 3 and∞. But
a face with a large number of edges can be inserted only in a cell with a large number
of neighbours and it can be removed only if it exists in the froth. Therefore, only some
values ofx2 are admissible. One can easily see that a triangle (x2 = 3) can always be
inserted in the proximity of a vertex. Analogously, a square (x2 = 4) can also be always
inserted in the proximity of an edge. From (17) it follows therefore that 3D Euclidean
froths with 86 X∗3 6 10 can always be generated. But, in general, it should be possible
to insert faces with higher values ofx2. To have an estimation for the ‘typical’ value for
the number of edges of the inserted face let us make a cut of the whole 3D froth with
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a plane. The result is a 2D Euclidean froth where each single face is the result of a cut
on a 3D cell. This 2D froth is therefore a representative set of faces produced by random
cuts of 3D cells. The average number of edges for this set of faces isx2 = X∗2 = 6.
Therefore, from (17), a ‘typical’ froth generated by cell division is expected to have a
fixed-point coordination aroundX∗3 = 14 [28]. Cells in biological tissues appear in various
polyhedral shapes with a number of faces distributed in a narrow range around 14 [29].
A widely studied 3D froth made with identical cells is the ‘Kelvin froth’: its cells are
space-filling truncated octahedra withX3 = 14 [30, 31]. Coordinations between 15.53 and
14 are found in Voronöı partitions of space [32], where the higher value corresponds to a
Voronöı partition from random points [35], whereas the lower value corresponds to more
compact and homogeneous packings. Smaller values in the range 13.333 6 X∗3 6 13.5
characterize an interesting class of natural structures (Frank–Kasper phases [33]) which
partition ordinary space with cells with pentagonal and hexagonal faces only. Soap froth
has typicallyX3 ' 13.7 [34].

In a D-dimensional froth a (D − 1)-dimensional interface with coordinationxD−1 is
inserted or removed by cell-division or coalescence transformations. As pointed out above,
simplexes with coordinationsxD−1 = D can always be inserted in the proximity of an
existing vertex. This is the minimum possible value forxD−1, substituted into equation (17)
it sets the minimum value of the average number of neighbours in aD-dimensional
Euclidean fixed-point structure at theminimal coordination

X∗D = 2D + 2. (18)

The argument for the ‘typical’ cut that we used in 3D can be directly extended to any
dimension. Indeed, one of the properties of froths is that a cut with a hyperplane of a
D-dimensional froth generates a (D − 1)-dimensional Euclidean froth. For instance, a cut
of a 4D froth gives a 3D Euclidean froth. We can assume, that this froth has the ‘typical’
coordinationX∗3 = 14 found above. Inserting into equation (17) one getsX∗4 = 30. The
same arguments, extended to any dimension, give

X∗D = 2(D+1) − 2 (19)

for the average number of neighbours per cell in the ‘typical’D-dimensional froth.
What makes equation (13) powerful is the fact that, not only the average number of

neighbours, butall the average properties of the fixed-point structures can be deduced in
terms of the properties of the inserted interfaces.

5.1. Minimally coordinated froths

Let us first construct the Euclidean froth with minimum coordination numbers. It is the
fixed-point structure associated with a cell-division transformation which inserts interfaces
with minimal coordinations. These interfaces are (D − 1)-dimensional simplexes inserted
in the proximity of a vertex. They havexk = k + 1 (for k < D). By substituting into
equation (13) one obtains

X∗k =
D + 2− k
D + 1− k (k + 1). (20)

(Note thatX∗D = 2D + 2, as discussed above.) These are the average structural properties
of a froth which is tiling a manifold withχD = 0 which is homologous to the Euclidean
space. It is the known Euclidean froth with minimal coordination numbers. Starting from
any givenD-dimensional froth one can always transform it into this minimally coordinated
one by applying an infinite number of cell divisions near existing vertices. The resulting
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structure is expected to have cells with very different topological properties. Indeed, for
each cell-division transformation a new cell withD + 1 neighbours is inserted and one
neighbour is added to theD+1 cells around the inserted simplex, distributing therefore the
coordinations inhomogeneously between cells.

5.2. Homogeneous partitions

A D-dimensional froth hasD + 1 edges incident on each vertex. In an ideal homogeneous
partition of space these edges are equally separated in angle. That corresponds to an angle
θ ideal = cos−1(−1/D) between each couple of edges [25]. In a froth, edges must close in
rings which are bounding 2D faces. It is easy to see that with the angleθ ideal, flat rings
close with an average number of edges equal to

Xideal
2 = 2π

π − cos−1(− 1
D
)
. (21)

This number is 6 in 2D, 5.104 in 3D, 4.767 forD = 4, 4.588 forD = 5 and tends to
4 whenD → ∞. Note thatXideal

2 is irrational forD > 2. In the Euclidean space, the
‘ideal’ structure cannot be obtained by any ordered lattice structure. This is an example of
geometrical frustration. But disordered or non-periodic structures can approximateXideal

2
with arbitrary precision avoiding in this way the frustration.

The average number of edges per cellXideal
2 (equation (21)) is the only quantity of the

ideal structure that can be calculated by using these geometrical arguments. All the other
coordinations are unknown, but we can construct fixed-point structures that approximate
this ideal froth in the ring coordinationX2. For these structures we can calculate the whole
set of coordinations, and therefore we can infer information about the coordinations of the
ideal one.

We expect that structures which uniformly partition space must haveX2 ' Xideal
2 .

By cell-division transformation it is possible to generate froths that approximate the ideal
structures by inserting interfaces withx2 close to the ideal valueXideal

2 .
For D = 3, Xideal

2 = 5.104 which corresponds toXideal
3 = 13.392. We can generate

homogeneous partitions by inserting pentagonsx2 = 5 or hexagonsx2 = 6 obtaining (from
equation (17)) 126 X∗3 6 14, which is in the right range.

In general, since we are looking for homogeneity, it is logical to insert as interfaces
regular polytopes withx2 close to the ideal valueXideal

2 . These polytopes can only be
hypercubes{4, 3, . . . , } (which havex2 = 4) and the polytope{5, 3, . . . , } (with x2 = 5),
but this second polytope exists only up toD = 4 ([26] and appendix A).

5.2.1. Cell division with{5,3,. . . } (the (a) plots in figure 3). Cell-division operations which
insert the polytope{5, 3, . . .} can therefore generate Euclidean fixed-point structures up to
D = 5. In D = 3 this corresponds to cell divisions which insert pentagonal faces, that
generate a fixed-point structure withX∗2 = 5 andX∗3 = 12. In 4D, the fixed-point structure
obtained by inserting dodecahedra ({5,3}, x2 = 5, x3 = 12) hasX∗2 = 100/21= 4.7619. . . ,
a value that is very close to the ideal one. The 4D cells of this froth haveX∗4 = 26
neighbours on average. ForD = 5, by dividing cells with the polytope{5,3,3 } (x2 = 5,
x3 = 12, x4 = 120) we obtain a fixed-point structure withX∗2 = 75/16 = 4.68. . . (see
equation (13)), which is larger than the ideal value. The average number of neighbours is
in this caseX∗5 = 242.
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Figure 3. The average ring connectivityX2, for homogeneous partitions of spaces of dimension
D, obtained from a geometrical approach [25] (full curve) is compared with those of the fixed-
point structures (symbols).

5.2.2. Cell division with{4,3,. . . } (the (b) plots in figure 3). The average coordinations of
the fixed-point froths generated by inserting hypercubes{4, 3, . . .} are given by imposing
xk = 2k into equation (22))

X∗k =
(D + 2− k)(D − 1+ k)
(D + 1− k)(D + k) 2k. (22)

In this structure theD-dimensional cells haveX∗D = 4D − 2 neighbours on average. The
average ring coordination isX∗2 = 4D(D + 1)[(D − 1)(D + 2)]−1 which correctly tends to
4 whenD →∞, but it is consistently lower thanXideal

2 for D > 2. This is presumably a
rather inhomogeneous structure.

5.2.3. Homogeneous cell division (the (c) plots in figure 3).To maximize homogeneity one
can construct a structure by inserting new interfaces with the same topological properties as
the existing structure. We expect a resulting structure that evolves towards a self-uniform
homogeneous partition. Let us therefore perform cell-division transformations by inserting
interfaces withxk = X∗k (with k = 2, . . . , D − 1). By substituting into equation (13), one
obtains a recursive equation with the following solution

X∗k =
(

1+ D

D + 1− k
)
k. (23)

HereXd = D(D+1) andX2 = 22D−1
D−1 , which asymptotically tends to 4 and is much closer

to the ideal value than the one of structure (b).
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Table 1. Average ring coordination (X2) and cell coordination (XD) for some Euclidean fixed-
point structures (FP) generated by cell division (see text).

FP {5, 3, . . .} (a) FP{4, 3, . . .} (b) FP (c) FP (d)

Ideal X∗2 X∗D X∗2 X∗D X∗2 X∗D X∗2 X∗D
D Xideal

2 5 D(D+1)
(D−1)(D+3) 4 D(D+1)

(D−1)(D+2) 4D − 2 22D−1
D−1 D(D + 1) 12 D

3D−2 2D+1 − 2

3 5.1043 5 12 4.8 10 5 12 5.1458 14
4 4.7668 4.7619 26 4.4444 14 4.6667 20 4.8 30
5 4.5881 4.6875 242 4.2857 18 4.5 30 4.6154 62
6 4.7728 4.2 22 4.4 42 4.5 126
7 4.4017 4.1481 26 4.3333 56 4.4211 254
8 4.3468 4.1143 30 4.2857 72 4.3636 510
9 4.3052 4.0909 34 4.25 90 4.32 1022

10 4.2724 4.0747 38 4.2222 110 4.2857 2046

5.2.4. Cell division with ‘typical’ interfaces (the (d) plots in figure 3).Partitions can be
generated by inserting ‘typical’ interfaces as described before. Here the ‘typical’ (D − 1)-
dimensional interface has coordinationsxk which are equal to average coordinations of the
fixed-point Euclidean structure obtained with this procedure inD − 1 dimensions. The
valuesX∗k are then given in term of a recursive equation (with initial conditionX∗1 = 2).
Here are the solutions fork = 2 andk = D, which have a simple compact form

X∗2 = 12
D

3D − 2
X∗D = 2(D+1) − 2.

(24)

Surprisingly the product of these valences fromk = 1 to D also has a very simple form:
X∗1X

∗
2X
∗
3 . . . X

∗
D = D!(D + 1)!. Here, the value ofX2 is larger than that of the ideal

structure but is extremely close to it.
In table 1 the values ofX2 andXD are reported, up toD = 10, for the whole set of

fixed-point structures which have been studied in this section. In figure 3 the value ofX2

for the ideal partition and for the fixed-point structures (a)–(d) are plotted up toD = 24.

5.3. Kissing numbers

The average number of neighboursXD of a D-dimensional cell in a Euclidean froth is
an interesting quantity. In sphere packings a corresponding quantity is called the ‘kissing
number’ (KN), that is the number of identical spheres that can be placed around a given
sphere being in contact (kissing) with it [13]. To find sphere-packing configurations with
high KNs has relevance in the design of efficient codes. It is known that, for packings of
identical spheres, the KN is 6 inD = 2, 12 inD = 3, but exact answers are unknown
for dimensions above three except forD = 8 (KN = 240) andD = 24 (KN = 196 560)
where two especially dense latticesE8 andA24 achieve the maximal possible values of
KN. In figure 4 are reported the values of the highest known KNs for lattice and non-
lattice sphere packings. Two known bounds for KN whenD � 1 are also reported. The
KN question concerns finding the best local arrangements of spheres. In high-dimensional
spaces, this configuration does not necessarily take the form of a lattice packing. Disordered
or quasi-ordered packings are often more suitable to attain high KN. DimensionD = 9 is
the first where non-lattice packings are known to be superior. Here the Leech lattice39

has KN= 272 whereas the best bound known is 380 [13].
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Figure 4. Kissing numbers (KN—maximum number of identical hard spheres that can touch a
given sphere inD dimensions) and coordination numbersXD (average number of cells around
a given cell in aD-dimensional froth) are compared for some known sphere packings (open
symbols) and for the fixed-point structures (full symbols). Two upper and lower bounds for the
KN in high dimensions are also plotted (full and dotted lines).

With any sphere packing one can associate a cellular structure constructed by partitioning
the space into convex polytopes each one containing inside it a sphere. Kissing spheres
are neighbours. In a dense sphere packing the enveloping polytopes make a space-filling
partition of space. The number of neighbours for this system for polytopes is related to
the KN and is expected to be bigger than KN, because some non-kissing spheres can be
first neighbours in the associated froth. This is for instance the case inD = 3 where the
configuration with KN= 12 corresponds to a close packing of spheres with an associated
Wigner–Seitz cell that do not pack in a froth: the incidence numbers are not minimal.
This is a topologically unstableconfiguration. Infinitesimal random displacements change
the number of topological neighbours from 12 to an average value of 14, but in this case
neighbouring spheres will be not all in contact. In general, in close packings, we expect the
number of neighboursXD of the enveloping polytopes to be bigger than, but of the same
order of magnitude as, the KNs of the enveloped spheres.

In figure 4 the KNs for some known sphere packings are compared with the coordination
numbers obtained from our homogeneous partitions (a)–(d) up toD = 24.

5.4. Vorono¨ı partitions

The average number of vertices on the boundary of aD-dimensional cell (〈n0,D〉) can be
exactly calculated for Voronoı̈ partitions generated from random points [35, 36]:

〈n0,D〉 = 2

D

0(D)

0( 1
2(D + 1))2

[
0( 1

2)0(
1
2D + 1)

0( 1
2(D + 1))

]D−1
0( 1

2)0(
1
2(D

2+ 1))

0( 1
2D

2)
. (25)
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Figure 5. The average number of vertices in aD-dimensional Voronöı cell generated from
Poissonian points can be exactly calculated [32] (full circles). Here this number is compared
with the one associated with the fixed-point structures (grey symbols).

Asymptotically this quantity scales as〈n0,D〉 ∝ DD/2−1.
The average number of vertices per cell can be expressed in term of the coordinations

by

〈n0,D〉 = 1

D!
X1X2 . . . XD−1XD. (26)

(Note that forD = 3 equation (25) gives〈n0,D〉 = 96π2/35, that when substituted into
equation (26) leads toX3 = 2+ 48π2/35 = 15.53. . . .) By substituting the fixed point
configuration into (26) we find that the structure (b) has〈n0,D〉 = (D+1)2D−1, the structure
(c) gives 〈n0,D〉 = (2D)!(D!)−2, whereas (d) has〈n0,D〉 = (D + 1)!. In figure 5 the
behaviours of the average number of vertices per cell in the Voronoı̈ froth and in the three
structures (b), (c) and (d) is shown for 36 D 6 50.

6. Conclusions

The topological structure of aD-dimensional cellular system can be characterized, on
average, in terms of the coordinations (Xk) of the irregular polytopes which constitute
the structure (section 2). Only the coordinations of the even-dimensional polytopes (X2l)
are necessary for this characterization: the odd ones are expressed in terms of the even
ones by the relation (4). Therefore, the average structure of aD-dimensional froth is
characterized by a sequence{X2, X4, X6 . . .} of D

2 − 1 (or D−1
2 ) variables forD even (or

odd). These variables are related with the space curvature through equation (5). Regions in
the parameter space{X2l} corresponding toD-dimensional froths tiling spaces of different
curvature are discussed forD 6 4 (figure 1 and equations (6) and (7)).
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We used cell-division and coalescence transformations to buildD-dimensional froths
(section 3). We showed that through cell-division/coalescence transformations it is possible
to generate the entire class of froths tiling topologically identical manifolds. The dynamical
renormalization of the variablesXk under such transformations is found (equation (11)).
The existence of classes of structures which are invariant (fixed points) under cell-
division/coalescence was pointed out (equations (12) and (13)). We showed that these
structures are tiling Euclidean spaces.

Several fixed-point Euclidean structures were constructed in section 5. We discussed
the average statistical properties of minimally coordinated Euclidean froths, and for
several topologically homogeneous space partitions (equations (20)–(24) and table 1). The
topological properties of the most homogeneous cellular partitions were examined and
compared with known geometrical results (figure 3).

Finally, the fixed-point Euclidean structures were compared with known high-
dimensional structures generated by sphere packings and Voronoı̈ constructions (figures 4
and 5).
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Appendix A. The existence of polytopes{5, 3, . . .} up to D = 4

There is a class of regular polytopes withX2 = 5 and minimally connected vertices
({5, 3, ...}) which exists up to dimensionD = 4 [26].

They are pentagons inD = 2, dodecahedra ({5, 3}) in D = 3 and polytopes{5, 3, 3}
in D = 4. Tessellation of pentagons makes a 2D elliptic froth withX2 = 5 andC2 = 12,
which is a dodecahedron{5, 3}. Tessellation of dodecahedra makes a 3D elliptic froth with
X2 = 5, X3 = 12, C3 = 120, which is the{5, 3, 3} structure. It turns out that tessellation
with {5, 3, 3} polytopes will not make any 5D polytope [26]. If existing, such a structure
would be a 4D polytope withX2 = 5, X3 = 12, X4 = 120. By substituting these values
into equation (7), we getC4 = χ4, which impliesχ4 > 0. This hypothetical structure would
therefore be an elliptic froth, isomorphic to a sphere, which impliesχ4 = 2. Then, from
the previous identity,C4 = 2. The hypothetical{5, 3, 3, 3} structure would be an elliptic
froth which closes onto itself with two cells only. But two cells are insufficient to make a
5D polytope (the minimum number is 6). It follows therefore that the{5, 3, 3, 3} structure
does not exist, and nor do the other higher-dimensional tessellations{5, 3, 3, 3 . . .}.

References

[1] Thompson D A W 1942On Growth and Form(Cambridge: Cambridge University Press) ch 7
[2] Weaire D and Rivier N 1984Contemp. Physics25 59
[3] Stavans J 1993Rep. Prog. Phys.56 733
[4] Atkinson H V 1988Acta Metall.36 469–91
[5] Smith C S 1952Metal Interfaces(Cleveland, OH: American Society of Metals) p 65

Smith C S 1964Rev. Mod. Phys.524
[6] Stavans J 1993Physica194A 307–14



Dynamical partitions of space in any dimension 8593

[7] Mombach J C M, Vasconcellos M A Z and deAlmeida R M C 1990J. Phys. D: Appl. Phys.23 600–6
[8] Dubertret B and Rivier N 1997Biophys. J.73 38–44
[9] Voronoi G 1908J. Reine Angew. Math.134 198

[10] Sadoc J F and Mosseri R 1997Frustration Géométrique (Paris: Editions Eyrolles)
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